電腦維修進階:電腦芯片制作過程圖解
電腦芯片是什么?電腦芯片其實是個電子零件 在一個電腦芯片中包含了千千萬萬的電阻 電容以及其他小的元件。電腦芯片是怎么制作的呢?筆者來帶你領略下電腦芯片制作的全過程。
制造芯片的基本原料
如果問及芯片的原料是什么,大家都會輕而易舉的給出答案—是硅。這是不假,但硅又來自哪里呢?其實就是那些最不起眼的沙子。難以想象吧,價格昂貴,結構復雜,功能強大,充滿著神秘感的芯片竟然來自那根本一文不值的沙子。當然這中間必然要經歷一個復雜的制造過程才行。不過不是隨便抓一把沙子就可以做原料的,一定要精挑細選,從中提取出最最純凈的硅原料才行。試想一下,如果用那最最廉價而又儲量充足的原料做成芯片,那么成品的質量會怎樣,你還能用上像現在這樣高性能的處理器嗎?
除去硅之外,制造芯片還需要一種重要的材料就是金屬。目前為止,鋁已經成為制作處理器內部配件的主要金屬材料,而銅則逐漸被淘汰,這是有一些原因的,在目前的芯片工作電壓下,鋁的電遷移特性要明顯好于銅。所謂電遷移問題,就是指當大量電子流過一段導體時,導體物質原子受電子撞擊而離開原有位置,留下空位,空位過多則會導致導體連線斷開,而離開原位的原子停留在其它位置,會造成其它地方的短路從而影響芯片的邏輯功能,進而導致芯片無法使用。
這就是許多Northwood Pentium 4換上SNDS(北木暴畢綜合癥)的原因,當發燒友們第一次給Northwood Pentium 4超頻就急于求成,大幅提高芯片電壓時,嚴重的電遷移問題導致了芯片的癱瘓。這就是intel首次嘗試銅互連技術的經歷,它顯然需要一些改進。不過另一方面講,應用銅互連技術可以減小芯片面積,同時由于銅導體的電阻更低,其上電流通過的速度也更快。
除了這兩樣主要的材料之外,在芯片的設計過程中還需要一些種類的化學原料,它們起著不同的作用,這里不再贅述。
芯片制造的準備階段
在必備原材料的采集工作完畢之后,這些原材料中的一部分需要進行一些預處理工作。而作為最主要的原料,硅的處理工作至關重要。首先,硅原料要進行化學提純,這一步驟使其達到可供半導體工業使用的原料級別。而為了使這些硅原料能夠滿足集成電路制造的加工需要,還必須將其整形,這一步是通過溶化硅原料,然后將液態硅注入大型高溫石英容器而完成的。
而后,將原料進行高溫溶化。中學化學課上我們學到過,許多固體內部原子是晶體結構,硅也是如此。為了達到高性能處理器的要求,整塊硅原料必須高度純凈,及單晶硅。然后從高溫容器中采用旋轉拉伸的方式將硅原料取出,此時一個圓柱體的硅錠就產生了。從目前所使用的工藝來看,硅錠圓形橫截面的直徑為200毫米。不過現在intel和其它一些公司已經開始使用300毫米直徑的硅錠了。在保留硅錠的各種特性不變的情況下增加橫截面的面積是具有相當的難度的,不過只要企業肯投入大批資金來研究,還是可以實現的。intel為研制和生產300毫米硅錠而建立的工廠耗費了大約35億美元,新技術的成功使得intel可以制造復雜程度更高,功能更強大的集成電路芯片。而200毫米硅錠的工廠也耗費了15億美元。下面就從硅錠的切片開始介紹芯片的制造過程。
單晶硅錠
在制成硅錠并確保其是一個絕對的圓柱體之后,下一個步驟就是將這個圓柱體硅錠切片,切片越薄,用料越省,自然可以生產的處理器芯片就更多。切片還要鏡面精加工的處理來確保表面絕對光滑,之后檢查是否有扭曲或其它問題。這一步的質量檢驗尤為重要,它直接決定了成品芯片的質量。
單晶硅錠 |
|
新的切片中要摻入一些物質而使之成為真正的半導體材料,而后在其上刻劃代表著各種邏輯功能的晶體管電路。摻入的物質原子進入硅原子之間的空隙,彼此之間發生原子力的作用,從而使得硅原料具有半導體的特性。今天的半導體制造多選擇CMOS工藝(互補型金屬氧化物半導體)。其中互補一詞表示半導體中N型MOS管和P型MOS管之間的交互作用。而N和P在電子工藝中分別代表負極和正極。多數情況下,切片被摻入化學物質而形成P型襯底,在其上刻劃的邏輯電路要遵循nMOS電路的特性來設計,這種類型的晶體管空間利用率更高也更加節能。同時在多數情況下,必須盡量限制pMOS型晶體管的出現,因為在制造過程的后期,需要將N型材料植入P型襯底當中,而這一過程會導致pMOS管的形成。